R^2 as a goodness of fit statistic for mixed models

Matt Kramer

kramerm@ba.ars.usda.gov

Biometrical Consulting Service, ARS/BARC/USDA

.

Outline

- Introduction
- ightharpoonup (Desirable) properties of R^2
- ▶ Philosophies for extension into mixed models
- $ightharpoonup R^2$ estimates for examples of mixed models data
- Conclusion

Vorkshop on Spatial Statistics for Researchers–May 2006 – p.2

Introduction

- $ightharpoonup R^2$ is often quoted as a measure of goodness of fit, typically as the proportion of variance in the dependent variable that is explained by the model
- ightharpoonup It is natural to ask how R^2 changes when adding random effects or spatially correlated residuals
- lackbox Current packages don't provide an \mathbb{R}^2 statistic for an estimated mixed model

(Desirable) properties of R^2

Kvålseth (1985, Am. Statistician 39, 279–285) proposed the following requirements for \mathbb{R}^2

- ▶ 1. R² must possess utility as a measure of goodness of fit and have an intuitively reasonable interpretation
- ightharpoonup 2. \mathbb{R}^2 ought to be dimensionless
- ▶ 3. $0 \le R^2 \le 1$, where $R^2 = 1$ corresponds to perfect fit, and $R^2 \ge 0$ for any reasonable model specification
- ▶ 4. Applicable to (a) any type of model, (b) whether effects are fixed or random, and (c) regardless of the statistical properties of the model variables
- ightharpoonup 5. \mathbb{R}^2 should not be confined to any specific model-fitting technique

Workshop on Spatial Statistics for Researchers-May 2006 - p.3/21

Workshop on Spatial Statistics for Researchers-May 2006 - p.4/21

(Desirable) properties of R^2

- ▶ 6. Values for different models fit to the same data set are directly comparable
- ▶ 7. Generally compatible with other acceptable measures of fit
- 8. Positive and negative residuals weighted equally

(Desirable) properties of R^2

Under the usual regression model, various definitions yield the same numeric result, e.g.,

- $1 \sum (y \hat{y})^2 / \sum (y \bar{y})^2$
- $\sum (\hat{y} \bar{y})^2 / \sum (y \bar{y})^2$
- $\blacktriangleright \ (\sigma_y^2 \sigma_{y|x}^2)/\sigma_y^2$
- ▶ $1 \sum (e \bar{e})^2 / \sum (y \bar{y})^2$, e is a model residual
- Squared multiple correlation coefficient between the regressand and the regressors
- ▶ Squared correlation coefficient between y and \hat{y}
- lacktriangle Different definitions of R^2 may yield different quantities when the usual regression model is generalized

kshop on Spatial Statistics for Researchers-May 2006 - p.5/21

Workshop on Spatial Statistics for Researchers-May 2006 - p.6

(Desirable) properties of R^2

Cameron and Windmeijer (1996, JBES 14, 209–220), to extend the definition to count data, suggest

- ▶ 1. $0 < R^2 < 1$
- \triangleright 2. R^2 does not decrease as regressors are added
- lacksquare 3. R^2 based on residual SS coincides with R^2 based on explained SS
- ▶ 4. There is a correspondence between R^2 and a significance test on all slope parameters and between changes in R^2 as regressors are added and significance tests
- lackbox 5. R^2 has an interpretation in terms of information content of the data

Philosophies for extension into mixed models

Philosophy 1: \mathbb{R}^2 is a measure of between variable effects and should be free of contamination of within variable effects (e.g., autocorrelation due to repeated measures or geographic proximity), otherwise part of the variance of y is explainable by its own past or its neighbors.

Pierce (1979, JASA 74: 901-910) suggests the following form: $R_*^2 = (\sigma_{y|y_*}^2 - \sigma_{y|y_*,x}^2)/\sigma_{y|y_*}^2 \text{, where } y_* \text{ denotes past or neighboring } y.$ This is similar to the expression for R^2 , $(\sigma_y^2 - \sigma_{y|x}^2)/\sigma_y^2$, except that we are now also conditioning on y_* .

Vorkshop on Spatial Statistics for Researchers-May 2006 - p.7/2

Workshop on Spatial Statistics for Researchers-May 2006 - p.8/2

Philosophies for extension into mixed models

Philosophy 2: How much better than the mean is a model that predicts y when conditioned on the set of x variables and on past and neighboring values of y?

Magee (1990, Am. Statistician 44: 250–253) suggests developing general \mathbb{R}^2 measures based on Wald and likelihood ratio test statistics.

Wald R^2

Wald test: Buse (1973, Am. Statistician 27: 106–108) modifies R^2 as $1-\frac{\hat{u}'V^{-1}\hat{u}}{(Y-\bar{Y})'V^{-1}(Y-\bar{Y})}$, where $\hat{u}=Y-\hat{Y}$ (i.e. the spatially correlated residuals), V is the variance-covariance matrix of the residuals, and $\bar{Y}=\bar{y}\mathbf{1}$.

The inverse of V "undoes" the correlation between residuals.

One problem, we don't have V, we only have an estimate of it, and it may not be a very good estimate.

A second problem is that software packages don't have this expression pre-programmed, to calculate this \mathbb{R}^2 would require some work.

Vorkshop on Spatial Statistics for Researchers–May 2006 – p.9/2

Log-likelihood function for a two parm. model (mean and variance)

100 normally distributed samples were generated ($\mu = 0.5, \sigma^2 = 0.025$) and the log-likelihood function plotted for $\hat{\mu} = [0, 1]$ and $\hat{\sigma}^2 = [0.05, 2]$

/orkshop on Spatial Statistics for Researchers–May 2006 – p.11/2

Log likelihood \mathbb{R}^2

Likelihood ratio: $R_{LR}^2 = 1 - \exp(-\frac{2}{n}(\log L_M - \log L_0))$, where n is the number of observations, $\log L_M$ is the log-likelihood of the model of interest, and $\log L_0$ is the log-likelihood of the intercept-only model.

What is the log-likelihood? The log-likelihood of a statistical model is a function of the data collected and the parameters of the model; the form of this model is assumed known.

It is a special function, the value of the log-likelihood function increases as we reduce the difference between the data and our model for them (we change the value of the log-likelihood function by varying the parameters of the model).

The maximum log-likelihood occurs at those parameter values where this difference is minimized.

Philosophies for extension into mixed models

 \mathbb{R}^2 based on the likelihood ratio test possesses many desirable properties for a goodness-of-fit statistic

- ightharpoonup produces the usual R^2 for ordinary regression (like others)
- ▶ since it is based on likelihoods, there is a direct relationship with Kullback-Liebler distance, "information", and information gain $IG = -\log(1-R_{LR}^2)$ (note that IG is not a linear function of R_{LR}^2) (see Kent (1983), Biometrika 70: 163–174)
- ▶ it is easily calculated using output from mixed models software

R^2 examples

Ex. 1: RCBD + covariate (random coefficients, 3 treatments, 4 blocks, 2 obs/block-trt combination, $\sigma_{\beta_0}^2=4$, $\sigma_{\beta_1}^2=1$, $\sigma_{\beta_0,\beta_1}=0$, $\sigma^2=1$)

blk 1		
	Α	В
	С	Α
	В	С

blk 2			
В	С		
В	Α		
Α	С		

blk 3		
В	С	
Α	С	
Α	В	

shop on Spatial Statistics for Researchers-May 2006 - p.13/21

R^2 examples

Ex. 1: RCBD + covariate (random coefficients, 3 treatments, 4 blocks, 2 obs/block-trt combination, $\sigma_{\beta_0}^2 = 4$, $\sigma_{\beta_1}^2 = 1$, $\sigma_{\beta_0,\beta_1} = 0$, $\sigma^2 = 1$)

R^2 examples

R program used for simulating data and estimating the maximum log likelihood (with *nmle* package by Bates and Pinheiro)

model	parms	log likelihood	R_{LR}^2	R_W^2
intercept only	2	-64.45	0	0
trt	4	-63.55	0.07	0.07
trt + cov (f)	5	-59.10	0.36	0.36
trt + blk (r)	5	-60.60	0.27	0.32
trt + blk(r) + cov(r)	7	-42.74	0.84	0.93

f = fixed r = random

Spatial exponential correlation

Ex. 2: $\rho = \exp(-d_{i,j}/2)$, $\sigma^2 = 1$, level effect = 2, d = distance between i and j

circle = level 0 diamond = level 1

topograhic colors (blue = lowest values, light brown = highest values)

rkshop on Spatial Statistics for Researchers-May 2006 - p.17/2

R^2 examples

Example 2: Semi-variograms

Vorkshop on Spatial Statistics for Researchers-May 2006 - p.18/2

R^2 examples

mod	el	log likelihood	R_{LR}^2
inter	cept only	-495.94	0
level		-389.68	0.51
level	+ corr. resid.	-225.27	0.67

Conclusions

- ightharpoonup there are various R^2 's that can be developed for mixed models, all produce the same value for ordinary regression
- ightharpoonup an R^2 based on the likelihood ratio test is easy to calculate from standard mixed models output and has a connection to information theory
- ightharpoonup examples were shown demonstrating increases in \mathbb{R}^2 when adding random effects or correlated errors to the model

Workshop on Spatial Statistics for Researchers-May 2006 - p.19/2

Workshop on Spatial Statistics for Researchers-May 2006 - p.20/2